## FORMATION OF A CHIRAL CARBON CENTRE BY DIRECT METALLA-TION INTO A METHYLENE GROUP

V. I. SOKOLOV, T. A. SOROKINA, L. L. TROITSKAYA, L. I. SOLOVIEVA AND O. A. REUTOV Institute of Organo-Element Compounds of the Academy of Sciences, Moscow (U.S.S.R.) (Received September 30th, 1971)

## SUMMARY

The preparation of an optically active organometallic compound through the reaction between 8-ethylquinoline and lithium tetrachloropalladate is reported. The optical activity of this compound is associated with the presence of a chiral carbon atom.

## INTRODUCTION

Little work has been undertaken to date on optically active molecules having a  $\sigma$ -bonded transition metal atom linked to the chiral carbon centre. Such compounds could be of great importance in developing new approaches to model compounds.

We now wish to report a novel method for the formation of a chiral carbon centre through direct metallation (palladation) to an aliphatic methylene group by means of a reaction described recently involving 8-methylquinoline<sup>1</sup>. When the methyl group is replaced by an alkyl group of greater chain length a chiral centre is formed.

RESULTS AND DISCUSSION

The reaction between 8-ethylquinoline (L) and lithium tetrachloropalladate in methanol gave rise to a mixture of two products, a complex of type  $L_2PdCl_2$  (I) and a dimer having the palladium atom  $\sigma$ -bonded to carbon (II)\*.



The latter could be purified by extraction with benzene. The composition of the

<sup>\*</sup> We have observed that the palladation of 8-methylquinoline also yields a similar mixture, the complex  $L_2$ PdCl<sub>2</sub> being predominant in this case.

J. Organometal. Chem., 36 (1972)

mixture was established through use of the well resolved methyl bands in the NMR spectrum:  $\delta$  1.22 ppm (triplet) and 0.93 ppm (doublet) for (I) and (II) respectively.



It was found that the metal-chlorine bridges in the dimer could be easily cleaved upon treatment with optically active (1-phenylethyl)amine in dichloromethane, crystallization of the resulting product (III) affording one of the diastereoisomers,  $[\alpha]_D + 29.2^\circ$  (c 4; CH<sub>2</sub>Cl<sub>2</sub>). If the optically active amine in this complex was replaced by triphenylphosphine, compound (IV) was obtained,  $[\alpha]_D + 41.5^\circ$ (c 4.5; CH<sub>2</sub>Cl<sub>2</sub>)\*. The optical activity of the latter compound is solely due to the presence of the chiral carbon atom\*\*.

The formation of organometallic compounds of this type suggests the possibility of studying the stereochemistry of metal-carbon  $\sigma$ -bond breaking, and as an extension of our work<sup>2</sup> we have used a related reaction pathway starting with *N*methyl-*N*-ethyl-1-naphthylamine to examine the ability of nitrogen to act as a chiral centre when coordinated to a metal atom.

Work is at present in progress to elucidate how the chiroptical properties of the above complexes are affected by the replacement of palladium by platinum or nickel.

## REFERENCES

1 J. E. HARTWELL, R. V. LAWRENCE AND M. J. SMAS, Chem. Commun., (1970) 912.

J. Organometal. Chem., 36 (1972)

<sup>2</sup> V. I. SOKOLOV, L. L. TROITSKAYA et al., Izv. Akad. Nauk SSSR, (1971) 2611.

<sup>\*</sup> All compounds mentioned analyzed satisfactorily for C, H, Cl and Pd.

<sup>\*\*</sup> The four ligands at the palladium atom have a planar arrangement.